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Abstract

The least-squares finite element method(LSFEM) based on the velocity-pressure-

vorticity formulation is applied to large-scale/three-dlmensional steady incompressible

Navier-Stokes problems. This method can accommodate equal-order interpolations, and

results in symmetric, positive definite algebraic system which can be solved effectively by

simple iterative methods. The first-order velocity-Bernoulli function-vorticity formulation

for incompressible viscous flows is also tested. For three-dlmensional cases, an additional

compatibility equation, i.e., the divergence of vorticity vector should be zero, is included

to make the first-order system elliptic. The simple substitution or the Newton's method

is employed to linearize the partial differential equations, the LSFEM is used to obtain

discretized equations, and the system of algebraic equations is solved using the Jacobi pre-

conditioned conjugate gradient method which avoids formation of either element or global

matrices (matrlx-free) to achieve high efficiency. To show the validity of this method for

large-scale computation, we give numerical results for 2D driven cavity problem at Re -
10000 with 408 x 400 bl]inear elements. The flow in a 3D cavity is calculated at Re = 100,

400, and 1,000 with 50 × 50 × 50 trilinear elements. The Taylor-GSrtler-like vortices are

observed for Re = 1,000.
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1. Introduction

Although significant progress has been made in the finite element solution of incom-

pressible viscous flow problems, development of more efficient methods is still needed

before large-scale computation of 3D problems becomes feasible. This paper presents such

a development.

The most popular finite element method for the solution of incompressible Navier-

Stokes equations is the classic Galerkin mixed method based on the velocity-pressure for-

mulation, e.g., see Refs. [1-10]. One of notorious difficulties in the mixed method is the

satisfaction of the Ladyzhenskaya-Babu_ka-Brezzi (LBB) condition which requires the use

of different elements to interpolate the velocity and the pressure in order to obtain a sta-

ble scheme. For two-dimensional problems quite a few convergent pairs of velocity and

pressure elements have been developed, however most of these combinations employ ba-

sis functions that are not convenient to implement. For three-dimensional problems, this

difficulty becomes more severe and only rather elaborate constructions can pass the LBB

test. Another difficulty is due to the lack of symmetry and positive definiteness of the

linear equations arising from the classic mixed method. Iterative methods for solving this

kind of linear system have been hard to come by. As Gresho, Lee and Sani[11] pointed out

"there is currently no iterative solution method which can be guaranteed to work on the

discretized, primitive-variable incompressible NS equations". Therefore, direct Gaussian

elimination has been considered the only viable method for solving these systems. Un-

fortunately, for three-dimensional problems the computer resources required by a direct

method are beyond the capacity of present hardware.

One way to circumvent the LBB condition is to modify the classical Galerkin mixed

functional by appending some least-squares terms as Hughes and co-workers[12] did for

their mixed Galerkin/least squares method. However, this type of method requires the

choice of parameters, which depend on the mesh size ofindlvidual elements, and results in

nonsymmetric matrices, which are still hard to deal with. An alternative approach to the

use of equal-order elements (or unstaggered grids in a finite difference context) is to add

the Laplacian of the pressure term and the divergence of the momentum into the continuity

equation and to add a vector identity which relates the velocity and the vorticity into the

momentum equations. Then standard finite volume, finite difference and Galerkln finite

element methods can be employed to discretize the equations. This approach is proposed

by I-Iafez and Soliman[13], and is essentially related to the mJxed Galerkin/least-squares

method.

In recent years a great deal of attention has been drawn to projection methods

which have numerous aliases: splitting methods, fractional step methods, pressure cor-

rection methods, velocity correction methods and generalized and simplified marker,and-

cell(GSMAC) methods. This family of methods was originated with the work of Chorin[14]

in a finite difference setting_ and was transferred to the finite element version, e.g., see
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the studies by Gresho[15], Ramaswamy[16], Sh]mura and Kawahara[17], and Yagawa and

Eguchi[18]. In these methods, the pressure computation is uncoupled with that of the

velocity. The velocity is updated by explicit, implicit, or semi-implicit time-marching, and

the pressure is obtained by solving the Poisson equation. These methods generally require

less execution time and storage than the classical mixed Gaierkin methods. This type of

method should be classified as the mixed Gaierkin method, and the LBB condition still

should be respected.

In the category of projection methods we should especially mention adaptive hp-

methods developed by Oden and co-workers[19]. Their techniques can vary simultaneously

the mesh size h and the spectral order p of elements to produce high resolution of flow

features with a relatively small amount of computation. Their techniques combine some

new general multistep schemes based on hlgh-order characteristic methods with pressure

projections which are handled through a combination of exterior penalty methods and an

adaptive pressure correction technique.

For the solution of incompressible Navier-Stokes equations, we have been developing

a least-squares finite dement method (LSFEM)[20-22]. This method is based on the first-

order velocity-pressure-vorticity formulation. Using G O finite elements to discretize the

equations and minimizing the L_ norm of the equation residuals lead to a symmetric and

positive-definite algebraic system which can be effectively solved by simple matrix-free

iterative methods. This is a minimization problem rather than a saddle point problem,

and the choice of elements is thus not subject to the restriction of the LBB condition. In

other words, all variables can be interpolated by the same dement. This method is free

of any parameters. There is neither added dissipation or upwinding, that is, the LSFEM

is clean and robust. Since no derivatives are involved in boundary conditions, and only

physical boundary conditions are imposed, the implementation of boundary conditions is

extremely easy. In this method, all unknown variables (velocity, pressure and vorticity)

are solved simultaneously, and there is no complicated iteration between them.

The capabilities of the LSFEM have been further shown by Lefebvre et aL[23] for

two-dimensional unstructured triangular meshes, and by Tang and Tsang [24] for two-

dimensional time-dependent flows with thermal convection.

In the present paper the LSFEM is extended to large scale/three-dimensional com-

putation. Following this introduction, the velocity-pressure-vorticity formulation for in-

compressible Navier-Stokes problems is presented in Section 2. An alternative velocity-

Bernoulli function-vorticity formulation is discussed in Section 3. The numerical proce-

dures for solving the first-order equations are addressed in Section 4. The numerical results

for 2D and 3D cavity flows are contained in Section 5. Concluding remarks are given in



Section 6.

2. Velocity'Pressure-Vorticity Formulation

Let us consider the following steady-state incompressible Navier-Stokes problem in a

bounded 2D or 3D domain f_: Find the velocity _ = (u,v,w) and the pressure p such that

= 0 in (la)

w

I

Here MI variables are nondimensionalized, f = (f_, f_, fz) is the body force, and Re denotes

the Reynolds number, defined as
UL

I/

where L is a reference length, U a reference velocity and v the kinematic viscosity. Of

course, boundary conditions should be specified to complete the definition of the boundary

value problem.

Since the momentum equations(lb) involve the second-order derivatives of velocity,

direct application of the least-squares method requires the use of inconvenient C 1 elements

and produces matrices with large condition number. In order to use the LSFEM with C o

elements, we have to consider the governing equations of incompressible flow in the form

of a first-order system. Therefore, we introduce the vorticity-_ = (w_,w_,wz) = V × _ as

an independent unknown vector, and rewrite the incompressible Navier-Stokes equations

in the following first-order quasi-linear velocity-pressure-vorticity formulation:

(2a)

1 V
_.V_+Vp+ Re × "_ = f ' (2b)

v × = 0. (2c)

The first-order system (2a),(2b) and (2c) has an odd number (seven) of unknowns,

i.e. (u,v,w,p, ¢az,wy,Wz), and an odd number (seven) of equations, i.e. one continuity

equation, three momentum equations, and three definitions of the vorticity components.

When we classify this first-order system(assuming that the convective terms have already

been linearized) , we calculate the eigenvalues of a corresponding 7 × 7 coefficient matrix.

Obviously, this matrix has at least one real eigenvalue which means that this first-order

system cannot be elliptic in the ordinary sense. Therefore, the least-squares finite element



method based on (2a),(2b) and (2c) cannot have an optimal rate of convergence for all

unknown variables. In order to avoid this trouble, we add the following compatibility

condition into the system:

V- _ = 0, (2d)

so that we have seven unknowns and eight equations, and the ellipticity can be proved by

using the same technique as discussed in [25].

For Cartesian co-ordinates, the system (2) is given as

Ou Ov Ow

o--;+_ + o--;=o,

Ou Ou Ou Op l ( O_z
=_+v_+W_z+_+ Re 0y

Ov Ov Ov Op 1 Owz
=_+_+w_+_+_( 0z

= _-z +_ _-;y+w _+_z + Re 0_

Ov Ow

wz + Oz Oy = O,

By )= A, (3)

Ow Ou

¢v_ + Oz Oz - O,

Ou Ov
wz + - O,

Oy Oz

OWz O_y O_z

0--_-+ -g_-y+ 6-7=0.

Since the system is of first-order, the boundary conditions are thus very simple, and do

not involve the derivatives of unknowns. Let (F1, Y2, F3,1"4, Fs) denote the pieces of the

boundary surface F. The unit outward normal vector to F is denoted by _, and the

tangential vectors to F bye1 and _2. We may consider, for instance, the following boundary

conditions:

(a) u=0,v=0,w=0onrl (the wan);

(b) = = constant, _ = 0,w = 0 on r2 (the far field);
(c) u = given, v = O,w = 0 on r_ (the well developed inflow or outflow);

(d) u_ = 0,u_.2 = 0,p = constant on Fs (the outflow);

(e) un = O,w,-_ = O,w_2 = O,p = constant on F4 (the free surface).
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We note that in most cases the specification of boundary conditions for the vorticity

components is not necessary. At solid wall and well developed inflow or outflow boundaries,

we prescribe only the velocity components, no vortlcity is involved.

3. Velocity-Bernoulli Functlon-Vorticity Formulation

The system (2) is not the only way to write a first-order formulation by using the

vorticity as an independent unknown vector[26]. By introducing the Bernoulli function(the
1 2

total enegy) b ---p ÷ _(u 1 + u_ + u_a) as an independent variable instead of the pressure p,

we have the following Navier-Stokes problem: Find _, b and _ in _ such that

(4a)

-_x_+Vb-!V
Re x_=f, (4b)

-_x_=0, (4c)

V. _ = 0. (4d)

This first-order velocity-Bernoulli function-vorticity formulation is also suitable for the

LSFEM.

For Cartesian co-ordinates, the system (4) is given as

Ou Ov Ow

0--;+ N + o-;=o,

WSdy -- VW z ÷

U_z -- Wwz

V_z -- uwy ÷
cOb 1 cOwy cOw_

+ _( cOs cOy ) = A, (5)

_ ÷
cOy cOw

_-07
cOz coy

COw COu

%' + Ox COz= O,

cOu cOy
-- O,

Oy COx



+-ffyy + Oz -o.

For two-dimensional problems, let w = co=, we have

Ob 1 cgw

-w + -_x + Re Oy - L,

c_b 10_

+ - Re as = A, (6)

w+
Ou c%

--0.

cgy Oz

The velocity-Bernoulli function-vorticity formulation has some advantages from a the-

oretical point of view. In this formulation, the nonlinear terms _ × D are of zero-order,

that is, they are not related to any derivatives, and the rest of the terms constitute a

linear Stokes problem. Therefore, the whole system is elliptic. This fact may simplify the

nonlinear analysis of the Navier-Stokes equations.

4. Algorithm of Solution

The quasi-linear problem (3) (or (5), or (6)) can be linearized by the successive substi-

tution scheme, or the Newton's scheme. For example, for the equations (3), the nonlinear

convection term u_ can be linearized as u0_a_, by using the simple substitution, or as

u°_; + -gT_-8" u a'° u0___o by using the Newton linearization scheme. Here the superscript "0"
indicates that the value of the corresponding variable is taken from the previous calculation

step. For the equations (6), the nonlinear term -vw can be linearized as "vOw by using

the simple substitution, or as -vOw - vw ° + v°w ° by using the Newton's scheme.

The linearized first-order equations are now treated by the LSFEM[20]. The LSFEM

results in symmetric and positive-definite algebraic equations. A Jacobi preconditioned

conjugate gradient method is then employed to solve the linear algebraic equations. In

the conjugate gradient method, the major computation is the multiplication of the global

matrix with the global vector, and this can be done in an element-by-element mannei

without forming the global matrix[27]. In order to further save the storage, in our algorithm

even the element matrices are not formed, We directly calculate the product of the dement

matrix and the element vector. At the same time, the Jacobi preconditioner, which consists



of diagonal terms of the global matrix, can be easily formed. In this way we store only

several global vectors, and the derivatives of the shape functions at Gaussian points for

each element.

5. Numerical Examples

5.1. Comparison of Two Formulations

To compare the performance of the velocity-pressure-vorticity formulation and the

velocity-Bernoulli function-vorticity formulation, we performed a series of computations

for 2D cavity flow at different Reynolds numbers with 50 × 50 non-uniform bilinear ele-

ments(the mesh is the same as that used in [21]) using the following four schemes:

(a) Scheme PS, the (u, v, p, ¢s) formulation with simple substitution;

(b) Scheme PN, the (u,v,p,w) formulation with Newton linearization;

(c) Scheme BS, the (u,v,b,w) formulation with simple substitution;

(d) Scheme BN, the (u,v, b,w) formulation with Newton linearization.

In order to eliminate any effects from iterative solvers, in all these comparison studies

a direct solver was employed to solve the resulting linear algebraic system. Our numerical

results reveal that, as for the speed of convergence, Scheme PS and Scheme BS are almost

comparable, and Scheme PN and Scheme BN are almost comparable. However, in some

cases, the schemes based on the (u,v, b, cs) formulation need a little more iterations or a

closer initial guess to converge. Figure 1 shows the convergence history of the L2-norm of

residuals for the cavity flow at Re = 5000 using different schemes. For Scheme PS and PN,

the initial guess of u and v is taken from the results of Re = 3200. For Scheme BN the

computation started from the results of Re -- 4000. If the results of Re = 3200 are used as

the initial guess, Scheme BN does not converge. Here Scheme PS was implemented with a

relaxation number of 0.8121]. Without relaxation Scheme PS does not converge. Scheme

BS does not converge even with a relaxation number of 0.8 and the use of the results at

Re = 4000 as the initial guess. Based on the results of our numerical experiments, we are in

favor of the (u, v,p, w) formulation. In the following computation of large-scale examples,

Scheme PS is used with the Jacobi preconditioned conjugate gradient method.

5.2. 2D Driven Cavity Flow

The LSFEM solution of the 2D cavity problem has already been reported in [21] by

using the steady-state approach and in [24] by a time-dependent algorithm. In these pre-

vious studies, a grid of 50 × 50 nonuniform bilinear elements was employed. The numerical

results at Re = 10000 are in good agreement with the fine mesh 257 × 257 results of Ghia

et al.[28].

In this work, the objectives of choosing the 2D driven cavity problem are twofold.

First_ we would like to show the capability of the LSFEM for large-scale problems. Second,



wewould like to find out whether improved results can be obtained by using very fine grids.

The definition of driven cavity flow is as usual. The boundary conditions for (u, v)

are u = v - 0 on all solid walls and u = 1,v = 0 on the top lid. Also p = 0 is specified

at the centre of the bottom. NO boundaryc0ndltions are gi,_en for the vorticity. At first

we divided the cavity into 50 × 50 uniform bilinear elements with the size h = 0.02. In

order to take care of the singularity at the top corners, we again divided the top layer of

elements into two thin layers of thickness 0.005 and 0.015 units, respectively.

At first we calculated the flow at Re = 10000 with this 50 x 51 mesh. By using a kind

of continuation method discussed in [21], the computation could be done on a IBM PC-386

with 4M bytes memory in one day. Then we refined the mesh to 100 × 102 elements, and

interpolated the previous solution as the initial guess for the conjugate gradient method.

We applied this procedure sequentially until the steady-state solution was obtained for the

400 x 408 mesh in which most element have the size h = 0.0025, and in the top layer the

thickness of the elements is 0.0005. The storage required for this problem is less than 8M

words on CRAY-YMP. The residual of each discretized equation at Gaussian points was

less than 10 -6 .

The profile of the horizontal velocity for Re = 10000 along the vertical center line

of the driven cavity (_ = 0.5) is illustrated in Figure 2(a). Overall, the profile compares

well with that given in Ghia et a/.[28], except in the boundary layers. In our results, the

boundary layer phenomena are more pronounced. The computed streamlines and vorticity

contours are given in Figure (25) and (2c).

5.3. 3D Driven Cavity Flow

We choose the cubic driven cavity problem shown in Figure 3 to further test our

method. This problem has been simulated by u.sing finite difference[13,29-36] and spec-

tral methods[37]. Due to the difficulties of existing finite element methods for large-scale

computation, it may not be surprising that finite element solutions for this problem are

scarce. Only Kato, Kawal and Tanahashi[38] reported the detail of numerical results for

cubic cavity flows by using their GSMAC finite element methods. It should be noted that

Kato et aI. use the Bernoulli function and the vorticity to write the momentum equations.

However_ _n their computation the vorticity vector is not independent, but calculated from

the velocity field.

Most of numerical efforts were restrictive in mesh size and insufficient in resolution,

due primarily to the limitations on numerical methods and computer resources, except

Iwatsu et a/.[35,36], who employed very fine stretched mesh(S1 × 81 × 81).

Almost all of the previous researchers used time-marching schemes, and claimed that

steady-state solutions were obtained by their own standards of convergence for Re _ 2000,

except Rosenfeld et al.[32] mentioned that their solution at Re -- 100,1000 was still varying



in the iower corners. Also no Taylor-Grrtler-like vortices were reported for Re < 2000 by

previous researchers.

It should be mentioned that Koseff and Street[39-41] conducted systematic experi-

ments of flow in a driven cavity. Their experiments revealed that the flow field is highly

unsteady and possesses significant secondary motions (end-wall corner eddies and Taylor-

GSrtler-like vortices). However, in all of their papers, they showed only the results for

Re = 3200, and a very important observation, that is, for what Reynolds number the flow

becomes unstable, had never been reported.

In the present study, we carried out computation at Re = 100,400,1000,2000, and

3200. u = 1, v = w = 0 were specified on the top driven surface (y = 1.0), and u = v =

w = 0 on all solid walls(Figure 3). At the center of the bottom (z = 0.5,y = 0.0,z = 0.5),

p = 0 was specified. There wereno boundary conditions on the vorticity, Three meshes
were used. The first mesh consisted of 50 x 50 × 50 non-uniform trilinear elements. The

smallest element size had h = 0.002 at the corners; the largest had h = 0.04 at the center.

The second mesh had 50 × 50 × 50 uniform trilinear elements. The third mesh was based

on the second one. In order to take care of corner singularities two layers of thin elements

were added close to the top driven surface. So the third mesh had 50 × 52 × 50 elements.

The problems were solved using less than 13M words of memory on a CRAY-YMP.

The observations from our numerical results can be summarized as follows:

(a) Up to Re = 3200 the flow is symmetrical about the plane z = 0.5. This observation
is consistent with the results of numerical simulation published by other researchers.

(b) The 3D cavity flow is highly complicated. For 2D driven cavity problems the small

eddies appear along the boundaries. It is a common practice to use fine grids along the

boundaries to capture the flow details. However, for 3D problems a pair of small vortices

may be formed near the center part of the cube even for flows with moderate Reynolds

numbers (Re > 1000). Therefore, stretched 3D meshes may not be suitable for high-Re
flows. It means that for 3D simulation we should use uniform fine grids to capture small

eddies both inside and outside of the boundary layer. This makes 3D computation much

more di_cult than 2D computation.

(c) The 3I) cavity flow is highly Unstable. For 2D flows at high Re number(10000

for the cavity flow) by using the LSFEM it is quite easy to reduce the L2 norm of the

residual(assuming the whole area of the flow domain is 1) to the level of 10 -5 . However,

for the 3D cavity flow, we were not able to obtain the steady-state solutions for Re _ 1000.

(d) The Taylor-GSrtler-like vortices are observed for Re > 1000.

Some numerical results are provided in Figure 4, 5 and 6. Figure 4 and 5 show the

projections of velocity vectors and the contours of vorticity components on each section at

Re = _100 and 400. The flow patterns at Re = 100 and 400 are in good agreement with

the results of Iwatsu et a1.[35,36]. The vorticity contours compare well with those of Hafez

and
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Soliman[13]. Figure 6 clearly showsthe corner vortices and TGL vortices at the bottom
region of the cavity at Re = 1000.

6. Conclusions

A least-squares finite element method based on the velocity-pressure-vorticity formu-

lation is successfully extended to the solution of large-scale/3D steady-state incompress-

ible Navier-Stokes problems. We prefer the velocity-pressure-vorticity formulation to the

velocity-Bernoulli function-vorticity formulation, because the former is faster and not sen-

sitive to initial guesses. The LSFEM generates a symmetric, positive-definite algebraic

system of equations which can be robustly solved by the matrix-free conjugate gradient

method. In this method there is neither upwinding, adjustable parameters, numerical

boundary conditions, splitting, projection, nor artificial compressibility. Besides the finite

element interpolation and the linearization, no other approximation is introduced into this

method. Therefore, the solution of this method is more reliable than that of any existing

method.

By using this method the steady-state solution is computed for 2D cavity flow at

Re = 10000 with 400 × 408 bilinear elements. Our results suggest that the benchmark

solution of Ghia et al.[28] may not be accurate enough in the boundary layer. For 3D driven

cavity flows the presence of Taylor-G6rtler-like vortices is observed at Re > 1000. We hope

to confirm these results with further works on the unsteady Navier-Stokes equations.
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Figure 1. Convergence history for 2D cavity flow at Re 5000
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Figure 2. Numerical results for 2D cavity flow at Re = 10000

(a) Horizontal velocity profile,

-- present (401 x 409),/k Gkia[28] (257 x 257),

(b) Streamlines, (c) Vorticity contours.
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(a) Velocity vector at x=0.5 (b) Vorticity(_z) contours at x=0.5 (c) Pressure contours at x=0.5

i::::t" "_::

:ii _ "_i:
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Figure 4. Numerical results for 3D cavity flow at Re = 100
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(g) Velocity vector at z=0.5
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(h) Vorticity(_)contours at z--0.5 (i) Pressure contours at z=0.5

Figure 5. Numerical results for 3D cavity flow at Re = 400
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(a) Velocityvectorat x=0.5 (b) Vorticity(_z)contours atx-0.5 (c) Pressure contours at x=0.5

(d) Velocityvectorat y-0.5 (e)Vorticity(_v)contours at y-0.5 (f)Pressure contours at y=0.5
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(g) Velocity vector at z=0.5 (h) Vorticity(_z)contours at z=0.5 (i)Pressurecontours at z=0.5

Figure 6. Numerical resultsfor 3D cavityflow at Re = I000
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